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{nosome cases A sequence of preseriptions, which i effeet
amounts to an algorithm, can e justified by a set of generaliza-
tions. and the teacher presents this algorithm in preseriplive
Langnage. Famples are the algorithm for reducing a common
fraction to lower terms and that for synthetic divigion.

The implication for behavior of a prescription or algorithm s
explicit: this is the pedagogical advantage of a preseription. In
contrast, a slow learner may not know what to do after he has
heen tanght the correlative generalization. Hence preseriptions
are useful in teaching skills. However, excessive use of prescrip-
tions. while producing students who are good manipulators, will
not produce students who have much depth of llll(IOl‘st{l;l(ii*IE.“m

What seems desirable is a judicious blend of generalizations
and prescriptions. In the present stage of the art of teaching, the
proper blend is a matter of judgment. rather than a formula
developed fiom rescarch.

3 Moves in Teaching Principles
‘ ]:MC As in the case of teaching concepts. we can coneeive of moves

and strategies in teaching principles. When tapes of teachers
- - TR a PR : + 2 s ee . -
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2.4 Giving instances. provided the principle is a gencraliza-
. tion. or )
25 Demonstrating application provided the principle is a
preseription. ) .
3. ‘The principle is justificd. that s, the students are convineed
that the principle, if a generalization, is true or, if a preserip-
tion. will result in the correct answer. If the principle is a
generalization. the teacher—
3.1 Fxhibits instances. each of which the students recognize
as a true statement.
. i 3.2 Challenges students to find a conmterinstance, with their —
inability to find such wken as evidence that the gen-
. eralization is true,
33 Actually proves the generalization if it is a theorem.
34 Tells how the generalization, if it is a theorem, can he
proved but does not prove it. Example: “This theorem
can be proved by induction.” or
[€) ’ 3.5 Points out that the generalization is an axiom provided.
ERIC of conrse. it is taken as an axiom in the exposition. -

If the principle is a preseription, the teacher—

—_— 3.6 Demonstrates-that following the preseription attains the _
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TEACHING SECONDARY SCHOOL MATHEMATICS

The findings of research on the teaching of mathematics
are often contradictory. Many experiments are  inconclusive;
generalizations. are often derived from an inadequate sampling
or simply are not warranted. In view of the foregoing. many
teachers conclude that the research findings have no implieations
for practice. Such teachers demand a sizable body of evidence
before being_willing to change their metheds. They find much of
the research in the teaching of mathematics not of such a pature
as to canse them to question their existing beliefs.

Other teachers do not find the Jack of conclusiveness oi edi-
cational reséarch so disconcerting. The-very lack of conclusiveness
places few constraints upon the teacher and leaves him free to
test hypotheses for himself. to find out what works for hing. The
interpretation of the results of rescarch and their implications
for practice. therefore, depend to a large extent on the attitude
of the person considering the findings.

CURRICULAR EXPERIMENTS

Probably teachers are -more aware of revisions in the mathe-
matics enrrienlum than of changes in any other discipline. The
same can be said of laymen, whose children cope with the new
and unfamiliar subject. matter. On oceasion, these currienlar
devclopment projects are spoken of as experiments. This desig-
nation is appropriate provided onc realizes both the distinetive
and restrieted nature of such experiments. They amount to the
exercise of judgment in the selection. organization. and exposition
of subject matter. The course resulting from this selection. orga-
nization, and exposition is tried otit in various schools and class-
rooms, and the feedback afforded is used to revise and improve
the course. The cevele is repeated until the authors or other
decision makers are satisficd with the prodnct.

One ean cast curricular experiments into the form of sufficient
or necessary conditions. By far the most common experiment
demonstrates that if a certain topic (or topics) or a certain
course is taught in a certain grade, c.g., seventh, ninth. or twelfth,
certain effects are obtained. Such studies can be regarded as
feasibility studies. Usually the only cffects studied are those on
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students—how readily the students learn the items of sthject
_matter. how interested they are in the topics, or how they fare in
subsequent mathematic. courses. Either direetly or indirectly.
the teachers” evaluation of the experimental subject matter s
obtained. Where positive results are obtained, .. students do
mnderstand the subject matter, these experiments can he regarded
as existence proofs: there exists such and such a body of subject

matter which is learnable by students in such and such a grade, |

There are some general conclusions which appear tenable from
this kind of curricular rescarch. Mathematics which emphasizes
the properties of certain mathematical structures. e.g.. the in-
tegers. the rationdls. the reals, the comples nnmbers. convey
sets under varions transformations. and vectors, can be compre-
hended by secondary school students.« The? students can handle
more precise hingnage and greater rigor tham was assumed in
the past. Topies previously placed in more advanced conrses
can be learned in earlier conrses.

The second kind of aurienlar experiment attempts to demon-
strate a necessary condition. Such an experiment demonstrates

" that under certain conditions not teaching the expesimental sub-

ject matter will have certain detrimental effects. such as difficulty
in a subsequent conrse. Not much of this kind of curricular
experimentation has heen done on a seale which wounld facilitate
decisions by teachers abont what content to seleet from mathe-
matics conrses. Yet this kind of rescarch is as neeessay as the
former kind. The former facilitates decisions abont what can
be included: the latter facilitates decisions about what can be
excluded. And with the vast amonnt of learnable mathematics
available for inclusion in the crricubnm, help jn deciding what
to climinate or ot eliminate is of considerable value to the
classroom teacher.

lHustrative Curricular Experiments

Most curricular experiments have aceepted the existing orga-
nization of the corricalum, siz., algebra i the ninth_grade.
geometry in the tenth, a second year of algebra in the cleventh
grade (In some schools in the castern part of the United States.
geometry and the second algebra course are interchanged. ), and
a semester of trigonometry and a semester of college algebra
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or newer integrated courses including ammalytic geometry and
clementary functions in the twelfth grade.

The School Mathematies Study Croup (SNSGY has |Il'"( Iy
accepted the conventional pattern and has songht to . prepare
npgraded tests for the existing courses. SMSG has developed
alternatives. however. A second geometry conrse, which is un
integration of synthetic and analytic geometry and also of plane
and solid "vmm-h\ is available. For the twelfth grade 1 semester
conrse on clemientary fimetions and one on matriy algebra are
provided. -

The University of Hlinois Commiittee on School Mathematics
(UICS\) has departed somewhat from the conventional pattern.
The scope and sequencee of the units in algebra and the natnre of
the geometry course make these courses adaptable to the pattern
of two consccutive vears of algebra followed by a vear of geom-
etry. UICSM has developed i vector geometry course which s
an alternative to the other geametry course. A test on iransfor-
mational geometry presented from an indnctive and intuitive
point of view enables cighth-grade students to attain knowledge
of some of the properties of geometric figures that are invariant
nnder translations, rotations, reflections, and  glide reflections.
A conrse designed for enlturally disadvantaged stndents based
on the concept of fractions as stretchers or shrinkers appears
successful for teaching such students mathematies they samchow
have not acnired before,

The secand kind of cusricular experimentation does not-iee-
essarily aceept the prevailing enrrienlar pattern, i.e.. division of
the subject matter of nmathematics into  arithmetic, alecbra,
geometry, and analysis, and placement of these subjeets in grades
7 through 12 in the sequence stated. Rather, the approach is to
integrate some of cach braneh of mathematics into cach vear's
conrse. A student wha leaves this_sequence of conrses at some
point then hes some knowledge about cach branch., The in-
tegration of the branehies is attained by dealing with important
general concepts. e, set, mapping, velation. and fimetion. An
experitaent. which seeks to assess the efficaey of this approach
is the Secondary School Mathematics Currienlum Improvement

e .

Study (SSMCIS) certered at Teachers College, Colmmbia Uni.

versity, i directed by Howard F. Fehr.
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Conclusions of Curricular Experiments

What can be coneluded from the recent. extensive curricular
rescarch? Students learn the mathematics that is tanght in-the
new courses: some learn more than others. “The graduates of
schools nsing the new courses do as well in college as gradnates
from older courses. They do as well on standardized tests, even
though some of the standardized tests are not valid instrnments

for measuring achicvement in the newer courses. Not unexpectedly.

some students enjoy the npgraded conrses: some do not.

Some of the carly experimentation emphasized structure and
deemphasized practice in transforming  expressions. This was
done in the belief that as understanding of the properties of
relations. and operations over a set of nmmbers. c¢.g.. the rationals
er reals. grows, skill in manipulations and the nse of alogrithms
will grow concomitantly. The findings indicate that this belief
is a0t tenable. If students are not provided practice—drill, if
o1 cares to use the term—they do not acquire. speed and ac-
@ -acy in the manipulation and use of algorithms.

A tenable conclusion is that some ambiguity and equivocation
in the use of certain terms is not particularly detrimental to
lewrning. For example, in the initial exuberance for meticulotis-
ness in distingnishing hetween numbers, nun. ‘m]s, .md'coplcs of

n =erals, some theoreticians contended that eqnivocation on wonld

cartfuse the students. The facts do not support this contention.

Faallv, we need to bear in mind that the experiments which
demonstrate that students can learn the mathematics tanght do
ne cemonstrate that this mathematics should he tanght. That cer-
tar 1 snbject matter in mathematics is leamable is a nécessary con-
dit on for its selection, but it is not a snfficient condition. There
arc other gronnds and values which must inflnence the selection.
Th e are either explicit or implicit in the minds of those—
privcipally mathematicians—who make the selection. Classroom
teachers, and lavmen, too, will do well to insist that these
groands and values be subjected to continual appraisal and
revison where necessary.

TEACHING CONCEPTS

W now pa.s to a consideration of the findings of rescarch on
an activity in which mathematies teachers spend most of their
instructional time—the teaching of concepts.
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It is diffienlt to distingnish between teaching a concept and

teaching the meaning of a term or expression which designates

the concept. A teacher does abont the same thing when he

teaches the coneept of an ellipse, for example, as when he teaches -

what the term cllipse means. Henee it is not profitable peda-

gogically to distingnish hetween these two activitics. A concept

will he regarded as the meaning of a term.

= er—— T .
General Methods , *

In general. ‘there are three ways to teach a coneept. Suppose
a teacher wants to teach the concept of an ellipsc. He can state
the characteristics or properties of an ellipse. Or he ¢ give ex-
o amples and nonexamples of cllipses by drawing or showing
_representations or nonrepresentations. In hoth cases he is nsing
the object language, that is. he is using the term ellipse to talk
abont ecllipses—what their properties are or which partienlar
objects are or me not ellipses. Finally, he am talk about the
term ellipse itself: he ean define the term. In this case he is using
the metalanguage. To refer to these three wavs of teaching a -
concept. we shall nse the terms characterization, exemplification,
and definition respectively. When a teacher is teaching a concept
by stating the characteristics or properties an object must have
to be referred to by the term designating the concept, he s
teaching the concept by characterization. When he gives ex-
amples or nonexamples but does not tell why they are examples
or nonexamples, he is teaching the concept by exemplification. .
When he stipnlates how the term designating the coneept is to
he nsed, he is teaching the concept by definition. ]
An example may serve to clarify these three wavs of teaching
a concept. Consider the coneept of a rational munber. If a
teacher says that a rational number is the quotient of two integers
a/b where bs£0, he is characterizing a rational number. So also
wonld he if he said, “All the positive numbers—positive in-
“tegers and fractions—and their opposites and zero make up the
set of rational mumbers.” Or if he said, “Every terminating
decimal is a rational wumber.” The rational numbers can be
characterized in different ways and with varving preciseness. :
If the teacher said, "2, —2, 4%, %, 44, 3.0, 4228, e T

41695, and —0.013 are all ratienal munbers.” he would be em-

7
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ploying exemplification. The particolar exampleshe chooses may
be immaterial so long as he samples judicionsly from among the
significant subsets.
If he gives an explicit rule for using the term rational number,
for example. “If a and b £ 0 are integers. the quotient a/b is
called a rational mumber.” he is defining the term rational num-
ber. As in the case of characterization. different definitions vary-
ing in form. substance. and precision are possible.

Moves in Teaching Concepts

Analysis of tapes of teachers teaching mathematics reveals
various moves the teachers employ when tcn(.]nm, concepts by
(]mmc((‘n/.l(mn o
. The teacher gives a single cliaracteristic which may ])0—
1.1 A sufficient condition. Example: “If all the sides of a
polvgon are congruent. the polvgon is EQUILAT-
ERAL."
A necessafy condition, Example: "1 a natural number is
(Inm])]( ])\ some natural num])c: other than itself and
1. itis not a PRIME NUMBER.”
L3 A necessary and sufficient (ondmon. Example: “A sys-

tem of lincar equations is 2 CONSISTENT SYSTEM if

and only if its solution set is not the empty set.”

. The teacher classifies, in which he employvs the subset (or
superset) relation, Example: “A TRAPEZOID is a quadri-
lateral”

3. The teacher identifies. Example: *A PARALLELOGRAM is

a quadrilateral whose oppuosite sides are parallel.”

4. The teacher analyzes, in which he emplovs the partition
relation and names one or more of the proper subsets of the
set determined by the coneept. Example: “Circles, cllipses.
parabolas, and hyperbolas are CONIC SECTIONS.”

5. The teacher employs analogy in which—

5.1 The bas’s of the analogy is stated. Example: “PRECED-
ING is like being greater than in that hoth are order
relations.” or

(5]

° In the examples that follow, the concept being taught appears in capital,
letters.

8
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- 5.2 The basis of the amlogy is not stated. Example: “A
PARAMETER is like a variable.”
6. The teacher employs differentiation in which—
6.1 The basis of the difference is stated. Exan.ple. “CON-
GRUENCE is not the same as equality, in tha- the latter
implics identity of the objects equated and tie former
docs not.” or .
6.2 The basis of the difference is not stated. Evanple: .
NUMERAL is not the same as the munber it stands for.

Upon reflection, it becomes apparent that some of these moves
theoretically are more produetive of precise coneepts than others.
The inoves of necessary and sufficient condition and identification
(which differ only in form) lead to precise concepts, assmming,
of course, that the students nnderstand the sentences nsed. The
move of analysis, provided the complete partition is given, is a
precise move. O the other hand, the moves of analogy and dif-
ferentiation, particularly where thesbasis of the analogy or differ-
ence is not stated, are not conducive to precise concepts. How-
ever, these moves may be effective psyehologically. particularly
when they are initial moves in a sequence of moves.

The analysis of tapes of teachers teaching mathematics reveals
that when they employ esemplification. the following moves can
be identified:

The teacher gives one or more eaxamples which—

LI Mayv not be accompanied by the reason why it or they
are examples. Example: “The numbers 2, —4, and ',
in 2x%, »—nll)c. and 1.t are NUMERICAL COEFFI-

) + CIENTS.”
2 May be ﬂccommnwd by the reason why it or they are
c.\.lmplc.s. Example:” \/7 is an IRRATIONAL NUMBER
because it is not egual to the quotient of two integers.”
The teacher gives one or more nonexamples which, as in the
case of examples—

1o

2.1 May not be accompanied
by the reason why it or
they are not examples. Ex-
ample: “The polygon at the
right is not a REGULAR
POLYGON.” or




2.2 May be accompanied by

the reason why it or they
are not examples. Exam-
ple: “The polygon at the
right is not a REGULAR
POLYGON because it is
not equiangular.”

3. The teacher gives a comterexample to correct a misconcep-
tion a student has, as, for example. in the following-dia-
logue:

T:
S:

rp

g g

~3

e R e R

Who can tell us what a linear function is? )
It's a function whose graph is a subset of a straight line.

: Is the graph of x = 6 a straight line?

: Yes.

: Describe the position of the graph.

: W's a straight line parallel to the y-axis whose x-intercept

is --6.

: Right. (Draws a representation of the graph on the

chalkboard.) If x == 6. what is the valuc of v?

: It's undeternined.
s Ifx=6,cmy=1?

Yes.

: Can y equal —1. -J-3, -10?
: Yes; y can be any nuinber.
: Then does x = 6. whose graph is a straight line, deter-

mine a function?

S: Well, I guess not.
T:

Want to revise your coneept of a linear function? What is
a linear function?

"

4. The teacher specifies (lists) all the objects named by the -
term designating the concept. Example: “The UNITS MOST
FREQUENTLY USED IN MEASURING LENGTH IN
THE UNITED STATES are the inch, foot, yard, and mile.”

As in the case of characterization moves. some exemplification
moves arc more effective in teaching a concept than others.
Theorctically the mere giving of examples is not sufficient to teach
a precise concept. But in practice, it is found that students seem
to induce the proper set of sufficient conditions, and the concept
they attain is satisfactory for practical purposes. Accompanying

10
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examples with the reason why they are examples, ot course, makes
the sufficient condition explicit. Such a move would be used by a

- teacher if he felt the students might not induce the correct suffi-

cient condition.

To be sure, exclusive use of nonexamples is futile. Exhibiting
_polygons which are not regular polygons will nev.e teach a stu-
dent what a regular polygon is. Nonexamples are most effee-
tively used in conjunction with examples to make apparent a
necessary condition. In this case, an observation analogous to that
made about the use of examples can be made. Giving a non-
example without the reason why it is a nonexample leaves the
burden of induction (discovery) on the student; supplving the

reason makes the necessary condition explicit. The teacher’s judg-
-meut must determine whether or not the reason should be sup-

plied or clicited by questioning..

A specification. move necessarily results in a precise concept.
provided the student can remember all the members in the set
determined by the concept. If a teacher teaches the concept of
truth value by saying, “There are two truth values: true and
false,” the concept is precise, since the complete dcno_tntiou of
the tenn is given. :

We now tum to definitional moves, as identified by .umlvse
of tapes and textbooks. Modern logicians regard definition as an
operation performed on temus: we define terms but not objects
which are not terms. For example, we define the term rectangle,
but describe or characterize a rectangle: It follows that when

defining we have to talk about the term being defined—indicate’

what it is to mean or other expressions to which it i§ to be
synonymous. (To show clearly that we are talking about a tenn
rather than about what the term denotes. we use the conventions
of cither setting the term in Italics or enclosing it in quotation
marks. ) Thus the following are definitions:

By vector we mean an crdered n-tuple of real numbers.

An equilateral parallelogram is called a rhombus.

A polynomial is called a binoiial if and only if it has just two
terms. :

Because of the difference in logic, it is useful to distinguish be-
tween two kinds of definition: stipulated and reported definizions,
(Some writers speak of these respectively as nominal and lexical

11




definitions.) Both definitions may have the same formy; it is their
use which serves to distinguish them. A stipulated definition is
used to introduce into the language a new term, usnally a shorter
term, as a replacement for a longer term. For example:
We shall denote a quadrilateral having a pair of parallel sides
by the tetm {rapezoid.

sion (rapezoid and stipulates that it means the same as the
longer expression, quadrilateral hacing a pair of parallel sides.
B : Either expression can be replaced by-the other in any sentence.
Conceivably. there can be an expression other than frepezoid to
denote a quadrilateral having a pair of parallel sides.

It follows that a stipulated definition is a directive and does .
not have a truth value; one cannot say “true” or “false” or “cor- ' - :
rect” or “incorrect” to a stipulated definition. Logically, one could ‘
propoce a different definition, c.g., “trapezoid” could be used to
refer to a quadrilateral having only-one .pair of parallel sides. . .

- : and no one could say cither definition was right or wrong,

A reported defir.iuon is a report of how, in fact, a term is used.
Ience a reported definition has a truth value. If it is a correct
report, it is true; if it is an incorrect report, it is false. It follows
that reported definitions logically can be items in a true-false
test; stipulated aefinitions cannot. ' )

Tapes of classroom teaching reveal that teachers use defini-

tional moves in teaching concepts only infrequently; they eschew
the metalanguage and utilize the object language. Textbooks. : -
however, frequently use definitional moves; the more formal and - -
rigorous the exposition, the more definitional moves are used.
About the only use of a stipulated definitional move found from
observations of classroom teaching occurs when a teacher en-
conrages his students to invent a name to refer to some mathemati-
cal object they have identified.

q . j is clearly stipulative; & definition introduces the short expres-

Strategies in Teaching Concepts

As might be expected, it is found that when teachers teach
concepts they do not restrict themselves to one move; they use a
sequence of moves. Let us call o sequence of moves a strategy.
A frequently nsed strategy is an identification move or its metalin-

12
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* strategies if for no other reason than to provide variety in his

guistic correlate, a definition, followed by one or more exempli-
fication moves. The reverse seqnence. examples followed by an
identification, is also used. One can conceive of nmumy strategics
by listing all the permutations of the moves.

So far not cnough research_has been done to indicate mder
which conditions various strategies e effective. One might con-
jecture that the intellectual aptitude of the student, what he may
already know about the coneept. the nature of the concept, its
significance in the structure of other mathematical concepts, and
the level of performance the teacher wants to develop are factors
which a teacher would consider in choosing among the strategies
available. For slow learning students, one might expect a longer
sequence with stress on exemplificition moves. For fast learners,
one might expeet shorter sequences with more recourse to char-
acterization moves. If the concept is important, i.c.. it will be
used to build many other concepts. the teacher probably will .
sclect a strategy which will ensure a precise concept. Finally.
other things I)ciliﬁﬂoqunl, the teacher may want to use different

teaching.

TEACHING PRINCIPLES )
The term principle is usually used to denote -a-generalization -
other than an existential generalization, or a preseription. For
esample, we speak of the distributive principle of multiplication
over addition and the principle of mathematical induction, hoth
of which are gencralizations: all their variables are universally
quantified. We also speak of the principle of the density of the
rationals. Although one of the variables in this generalization is
existentially quantified, the others are tmiversally quantified.
From a true generalization a- teacher can, if he wishes, formu-
late a preseription for how a student should proceed to attain
the desired result. For example, from the generalization,

For all real numbers » and_y 740 and each positive rational
number n, (x/y)" == afyn,

a teacher can formulate the preseription:

To raise a common fraction to a power, raise both the numera-
tor and the denominator to the power.
£
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to assume that it must be true. otherwise the teacher or textbook
would not present it. Similarly, teachers infrequently: explicitly
justify a prescription or algorithm. However, if an instantial
move (move 2.4) or a demonstration move (move 2.5) is used
to clarify the principle, one can argue that such moves simul-
tancously dlarifv and justify the principle. )

If the statement move is not the first move but appears. if it
appears at all, near the end of the sequence. with instantial
moves or demonstration moves as” the initial moves, we may
regard the strategy as a guided discovery strategy. Typically. if
the principle is a generalization. the teacher presents instances of
the generalization (The students do not know what the gen-
eralization in question is.) and guides the students by questions
“or suggestions into inducing (discovering) the genceralization. In
other words, if the principle is a prescription or algorithm, the
teacher demonstrates how several problems are solved and secks
to educe the statement of the principle or algorithm (move 1.3).
Application moves then follow.

GUIDED DISCOVERY STRATEGIES

Enough rescarch has been done on guided discovery to war-
rant speciai consideration. Morcover, there are few topics in
pedagogical theory of teaching mathematics for which greater
enthusiasim in speeches and in writing exists than for guided
discovery. Enthusiasm for guided discovery is even greater in
mathematies than in the natural sciences. Morcover, this en-
thusiasm has been maintained for 35 vears or more. Belief in
the efficacy of the discovery method of teaching is for some
theoreticians so profound that they appear not to want to he
confused by facts. )

What is the argument for the cffectiveness of teaching by
guided discovery? It is argued that the student is involved in the
learning and, thercfore, manifests greater attention and thought.
The thrill of discovery is used to explain the retention and trans-
ferability of the knowledge learned. In learning by discovery,
the student improves his ability to solve problems. Being in-
trinsically motivated, the thrill of discovery sustains the motiva-
tion and students are less disposed to badger the teacher con-
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cerning the practicability of the knowledge discovered. By learn-
ing the heuristics of discovery, a student can continue his
, education after he has left the guidance of a teacher.

Finally, it is claimed that with guided discovery based on
induction. it is not pessible to go too fast for the student. When
a student fails to make the discovery; that is. does not sce the
pattern admist the differences. the teacher needs to supply more
examples or instances or make the examples or instances more
alike. In the conventional method of exposition, as many teachets
know. it is casy to go too fast for the students.

There are, however, arguments against the method of guided
discovery. It is a fact that many children are greatly threatened
by ‘having to exert the necessary cognitive cffort to make a dis-
covery. They often give up and wait for the discovery to be
verbalized cither by the teacher or hy another student. Discovery
is time-conswning and hence may not be an cfficient way of
teaching. Further. the argument maintains that one must learn
to comprchend much of his culture, as' well as learn to discover
new knowledge and solve problems. To accentuate the latter at

__the expense of the former is to be carried away by the charisma

“of only one particular style of learning. So goes the argument
against guided discovery.

What does rescarch have to say about teaching and learning

by guided disccverv? It may serve to quote from three scholars

- who have made intensive studies of the research hearing on

these topics. Veattrock (21, p. 33)° savs, “Many- strong claims
for learning by discovery are made in educational psychology.
But almost none of these claims has heen empirically sustantiated
or cven clearly tested in an experiment.” Cronbach (3. p. 76)
has drawn a similar conclusion: “In spite of the confident en-
dorsements we read in popular discourses of learning by dis-
covery, there is precious little substantiated knowledge about
what advantages it offers, under what conditions the advantages
accrue.” Perhaps it is on the basis of such conclusions and others
of a similar vein that Glaser (7, p. 23) reachies the conclusion
that “Since we know so little about it. one can say anything and
enjoy his own speculations without the constraints of knowledge.”

° Numbers in parentheses identify Sclected References listed on pages
31-32. . -
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Suggestions for Using Guided Discovery

But is there no guidance to be obtained frem the wxisting
research? No, this is not the case. One can safely conclude that
for a particular teacher—a skillful practitioner—guided  dis-
covery is an effective way of teaching that subject matter which
lends itsclf to this approach. In the hands of a poor practitioner
it is likely to be no more effective than is the expository method
in the hands of a poor practitioner of that method. .

Certainly guided discovery can be as mechanical as expository
teaching! For example. suppose the students understand the
coneepts of a variable, an open sentence, a closed sentence, and
logical quantifiers (whether phrased in English or in abbreviated
notation) and are able to replace a constant by a variable and to
appeénd quantifiers to an open sentence. Then guided discovery
can be quite mechanical. The students are simply taught to re-
place the constants in a true statement by variables and quantify
them over such a domain as to make the quantificd statement
true. Such a procedure requires very little thinking and the “dis-
covered” generalization is readily formed. )

In the hands of a poor practitioner, students can be called upon
to make conjectures and verbalize their discoveries hefore they
are ready to do this. Morcover, closure can be-secured on the
discovery before a significant number of students in the class
have made the discovery. In such a case. for the students who
have not made the discovery the teaching reverts to telling, the
telling being done by whoever verbalizes the discovery.

Using guided discovery on oceasions and where appropriate
has the advantage of providing variety iu instruction. Discover-
ing is exciting for many students, and a change to this method
probably would be welcomed. - )

Theoretically, guided discovery is appropriate for some items
of knowledge, but not for others. A generalization not definitional
in mature can be taught by guided discovery. The teacher knows
what generalization e wants to teach, hence he can present a
sequence of instances of the generalization sufficiently varied as
to help students identifv the domain over which the generaliza-
tion can be made. By using the move of counterexample to
correct any false generalizations the student may have reached,
the teacher can guide the students. or most of them at least, to
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induce the generalization of which cach of the true statements
the students Tave considered is an instance.
Logically, it is not possible to discover a stipulated definition.

- Such definitions are created. not discovered. However. considera-

o - 2. " ction of definitions can lead students to discover how: people use.

aggaage since definitions reveal how people do, in fact. use™

age. In - short. reported definitions can be discovered:

dted definitions cannot. - -

Althotigh it is possible to teach concepts by discovery, such
practice is'inefficient. A concept can he taught quite satisfactorily
by c.\'pl(')sition in such a way that.students gain a clear compre-
hension of it and do so more expeditiously than by the method
of guided discovery.

As was pointed out carlier in this section, guided discovery is .
cffective and appropriate for some students. Students who see
relationships readily. are able to abstract. and have-facility with e
linguage should be able to learn readily by discovery. Students e
who are not able in these intellectual processes will have diffi-
cul:y with guided discovery and may experience no more satis-
faction with this method of instruction than with an expository
method. Students who are insecnre. have short attention spans,
and are not persistent have heen known to give up casily and
simply to waste time until someone clse verbalizes the discovery.

Cronbach (3) has offered the conjecture that some experience - .
in discovering principles will provide a student new insight into
the nature of knowledge and how new knowledge is cstablished. - -

- Itwill also alter his conception of how a person copes with solv- .
ing problems. He continues his conjecture by opining that these
objectives may be realized by devoting only part of the instrue-
tional time to inductive procedures,

Sxpanding on Cronbach’s conjecture, theoretically an insight-
ful teaching procedure would be to use guided discovery to
cnable students to form conjectures. If these conjectures can he
proved, they-become theorems. If they are disproved, say by
finding a counterexample, it might become possible to restrict -
the domain over which the generalization is made, thereby ob- -
taining a new conjecture. This conjecture then is subject to proof.

Such a procedure should provide considerable insight as to how
a mathematician operates and how. in part, mathematics is ex-
tended and developed.

. : 19
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Most teachers are aware that skill in questioning enhances the
cffectiveness of  gnided  discovery.  Socrates is  the putative
progenitor of the method of questioning whereby the learner
is enabled to discover whether a statement is true or false by

. following the sequence of questions put to him by a teacher.
One might extend this technique and speak of it as dialectical

. dialogue. 1t is dialectical because the questions are based on a
logical approach. This is not to imply that the questioner ignores
the individual—what he knows, how he reacts. and what he “
seems able to comprehend. But the pattern of ‘enabling the stu-
dent to realize whether a statement is true or false necessarily
has a logical dimension. Certainly  kill in dialectical dialogue is -
learnable; we have many examples of teachers who become
increasingly proficient in its use. Whether or not it is teaclhable
is questionable. It is doubtful that we have sufficient knowledge
about "this technique that we can by teaching such knowledge
cnable a teacher to build such skill. Presently, the skill or art is
developed by practice and by receiving suggestions and practi- . .
tioner’s maxims from a supervisor.

OFf these practitioner's maxims, there seem to be a few which .
are useful to a teacher who secks to teach by guided discovery.
One is_to make sure that students have a clear understanding of
their objective—the task they are to accomplish. This provides
focus and enables them to see the relation hetween the various
tasks in the sequence they consider.

Another valuable maxim-is to make sure that students test their
conjectures for themselves. If a teacher is not carcful, he may by
facial expressien or tone of voice imply that the conjecture is,
true, if it is true, or false, if it is false. The students then tune to
the instructor. rather than to the data which may be available
to them. ‘

The final maxim concerns pacing. If a student appears to be
having trouble cither in forming a conjecture or testing his con-
jecture, it is often helpful for the teacher to pose simpler
instances, such that the analogy is more readily scen. This may
be done by restricting the domain over which the generalization
is to hold. It may also be done by having the student form a
table of data so that comparison and contrast are facilitated and
the analogy more readily apprehended.
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TEACHING MATHEMATICAL SKILLS

-Teachers recognize that not only shonld students learn con-
cepts and principles, but they shonld also learn to compute and
manipulate algebraic symbols. The concepts and principles pro-
vide the understanding which is the cognitive hasis for the skills
of computation and manipulation. ’

Under the impact of the psvchology of operant conditioning,
it was helieved that drill was the sufficient condition for develop-
ing skill. Students were given a set of preseriptions which they
memorized and practiced. Little attempt, if any, was made to
show how the preseriptions were justified by theorems or postu-
lates. The students learned that if they followed the prescriptions
they got the right answer.

When the drifl approach was found wanting (The students
forgot how to perform the operations once the drill ceased. ).
the point of view shifted to a belief that wnderstanding must
precode skills. Hence students were taught the “why™ bhefore
they were taught the “how.” In some cases the faith in under-
standing was so strong that insufficient practice was provided
the students.

Research evidence does not support the belief that for students
to develop and retain a skill they must be taught the mathe-
matical justification of an algorithm before they practice the
algorithin. It does not even support the helief that students
nmst understand an algorithm. in the sense of being able to
explain its mathematical basis. for them to develop skill in using
it, provided they continue to use it.. We find, for example, some
clementary teachers who can divide one rational number by
another with speed and accuracy without knowing the mathe-
matical basis for the algorithm they use.

But if an operation is not continally used, it appears that
imderstanding the operation aids in its retention. For example,
after a long period of not performing the operation of finding
square roots the student who wnderstands the concept of a
square root of a positive rational number is more likely to be
able to find a rational approximation of a square root than the
student who once learned the conventional algorithin and de-
veloped skill in using it but never imderstood it. With the under-
standing that if v is a positive number and xx —= y. x is a square

i
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root of v. he cin guess at a factor of vy, divide v by that factor
and see whether the quotient is the same as x. If not. guided by
the difference between the two factors he zan guess at a second
approximation. repeat the process, and ultimately find an approxi-
mation of the square root to whatever accuracy is desired.
Similarly, if a student knows what the notation (x -+ y)(2x —5)
means and knows the distributive property of multiplication
over addition, he can compute the product even if he has for-
gottén an elegant algorithm he was once taught.

Suggestions for Teaching Skills

In teaching skills, there appear to be some principles which
can be justificd by evidence. One is that whereas practice—drill -
—is a neeessary condition-in lerning a skill, it_is not a sufficient
condition. One can pradtice wrong moves as well asTight moves,
There is nuihing magic about practice; the practice must be in

— accordance with certain conditions.

Practice will be most effective when the student wants to jm-
prove, This principle is an instance of the more general principle
of motivation. The student must be convinced that the end is
worth the mcans; that the skill he sceks to develop is worth the

. - hill he must accept. Teachers can strengthen the desire to
’ acquire a skill by pointing out the usefulness of the skill.

Assuming that a teacher allocates a certain amount of time for
practicing an algorithm, the practice time will be most effective
if it is cxpended in periods spaced out over a week or more than
if it is expended all at once. The shorter periods sustain interest
and avoid fatigue and boredom. Some theorists even speculate

“that there is latent learning during the intervals when the
algorithm is not being practiced,

Practice is more cffective when the student is kept aware of his
progress and improvement. This principle is an instance of the
more general principle that learning is more cffcetive when the
student has immediate knowledge of the results of his actions.
Knowledge of improvement is itself a motivating factor as well
as a basis for sclf-diagnosis and sclf-remediation,

In keeping with the principle of individualization of instruc-
tion, practice should be differentiated in terms of the needs mani- .
fested by different stndents. Some students need more practice

.
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at a time than others; some nced review more than others. A
minimum amount of practice is essential; thereafter for any
student the teacher’s judgiment should dictate the kind. amount,
and frequency of practice.

Practice should be subject to the observation and criticism of
the teacher. When a teacher assigns prictice excreises, he should
not expect as much improvement if he does not observe at least
some of the sxercise sessions as if he observes the students at
work and offers suggestions and praise for improvement where
appropriate.

The issue of whether er not students should be permi((ed to
use “crutches.” for example, writing a numeral at the top of a
column when “carrying” in adding, or writing the decomposi-
tion of digits when “borrowing” in subtracting, scems to reflect
a value judgment a teacher has to make for himself. Some teach-
ers feels that “crutches” are inclegant and should be discouraged.
Others see nothing wrong with a student using any “cruteh” he
finds helpful. Perhaps there is a tenable middle position. The
primary objective is accuracy. If a student cannot attain accuracy

without using a “cruteh,” he should be permitted to use it. His

span of attention is insufficient to enable him to work otherwise.
Elegance is less important than accuracy and absence of frustra-
tion.

PROGRAMED TEXT MATERIALS

We now turn to another topic on which, like gnided discovery,
there has been much’ research, namely, learning by means of
programed texts. Programed text materials have had an interest-
ing history, Scarcely any pedagogical phenomenon has experi-
enced so much initial enthusiasm and subscquent waning of this
enthusiasm in such a short period of time as programed test
materials. There continue to remain, however, enthusiastic pro-
ponents who would have us believe that programed text mate-
rials (and, more generally, programed instruction) are the
solution to many of the problems of our present educational
processes. Those regarding pu)gr.lmcd text materials with a
jaundiced eve see this pedagogical ‘medium ay” providing some
assistance-but having several concomitant undesirable aspects.
< Since the initial enthusiasm for programed text materials,
there have been several variations on the initial programs . de-
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veloped. These various adaptations have been employed for

programing the acquisition of hnowledge in most academic sub- -

jeets, mathematics being the most common. There are several
reasons for the popularity of programed test materials in mathe-
matics. For one reason, the conceptsin mathematics are precise

-and the generalizations hold_over a well-defined -domain. For

another reason, there is considerably more notation in mathe-
matics than in any other subject, and the learning of notation cen
be casily taught by programed text materials. As a third reason,
the deductive nature of mathematics makes sequencing of the
frames in programed text materials easier than for other subjects.
Finally, examples of concepts and instances of gencralizations
are readily obtained and the implications of theory for the solu-

tion of problems is clearer than for any other subject.

Findings from Resedrch

What conclusions can be drawn from the research on the use
of programed texts? One conclusion is that students do learn from
programed tests. Some students learn more than others. How-
ever, there is no conclusive evidence that students either lear
significantly more knowledge, acquire it with greater efficiency,
or rcach more depth in understanding. :

Programed texts ean produce understanding as well as knowl-
cdge. However, knowledge and understanding at higher in-
tellectual levels are not particularly suitable for programed learn-
ing. For example. although programed materials can enable the
student to understand a particular proof, they are not as successful
in teaching hiny how to construct a proof. Programed text materials
are not very successful in teaching the intellectual skills of analysis,
svnthesis, and cvaluation, -

Programed text materials are effective for some students but
not for others. For highly motivated students and students who
learn quickly programed tests can be useful. For students who
arc somewhat hored with the conventional style of teaching, the
novelty effect of programed text may sustain interest at least for
a period of time. ‘Particularly is this the case for students who
Lave cxperienced lack of success in the conventional style of
teaching: a change to a different mode may be therapeutic.
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Programed text materials can be used to supplement the con-
ventional instruction” guided by a teathook. If a student does
not understand the presentation made either by the teacher or
by the conventional text. he can twin to a programed text for
further clarification. The careful pacing of programed texts mav
make it casior for some students to follow the exposition.

It has heen pointed out that programed texts can be effectively
used by students who transfer into a course and find themselves
out of step with what is beirg tanght. A programed text will
enable them to catch up with less direction on the part of the
teacher than if a conventional text is used. How able the student
will be to solve problems using the knowledge he acquires is
another matter, however.

Programed texts can also be used to supplement the currice-
ulum. By using a programed test. an able student might be able
to complete a course in analvtic geometry or even a course in
caleulus with a minimum of direction by the teacher. In a small
high school where a four-year program in mathematies is not
pussibie because of- the small number of students who might take
the third and fourth vears, programed texts can be used to enable
the few students who wish to take the third and fourth courses
to do so. Of course, the same comment can he made for the con-
ventional testbook. However, it is probably the case that a stu-
dent who attempts to study trigonometis, advanced algebra, or
clementary functions independently by using a conventional text
would require more assistance from a teacher than a student who
would attempt these courses by meanssof programed texts. On —
the other hand. students who complete such courses probably
will not be so adept at solving problems as students who com-
plete conventional courses: typically, programed texts do not
stress problem solving,

Another ‘daim for programed text materials is that their use
increases the efficiency of instruction. One study has shown that
students can learn the same amount of knowledge taught in the
conventional way with a savings of time up to 30 percent when
programed text materials are used. Morcover, the individualiza-
tion which is permitted by programed text. so it is claimed. en-
ables the teacher to make better use of his time in working with
individual students than in the conventional way classes in

mathematics are taught.
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We now turn to disadvantages of programed texts. One dis-
advantage is their high expense. Such expense is justified hecause
of the vast number of hours required to write the program
and to try it out and revise it. There is the danger that once a
board of “education has invested a sizable amoumt of money in
programed text materials, there may be considerable reluctance
to abandon their use. The board may feel that it must use them
for a long period of time to get its moncy’s worth out of them. -
A reluctance to change texts may result in an inflexible curric-

“ulum which does not keep abreast of current changes.

Programed texts pose somewhat-of a problem for poor readers
because greater reliance is placed on obtaining meaning from the
printed word. In-the conventional style of teaching, much under-
standing can be obtained by listening to the teacher’s oral pres-
entation. For students who enjoy discussion—the give and take
of diftering opinions—programed texts can be stifling.

As a further negative aspect, the sheer logistics of handling
vast amounts cf {ext materials is sobering. For example, - the
SMSG- ninth-gr. .. bra course in” Crowder requires 2,357
pages organized in six volumes. Storing such quantities of texts,
passing them.out at the beginning of an instruction period,- and
collecting thein at the end, when it is unlikely: that many students
are at the same point in the_course or even in the same course, is
a hit overwhelming. Should the time come when every teacher
has the services of teacher aides, much of this kind of nonprofes-
sional work can be transferred to such individuals. However,
until that day arrives, one wonders whether teachers will most
profitably spend their time keeping records and moving instruc-
tional materials about.

In conclusion, one is tempted to conjecture that the solution is
not to abandon the conventional texthook, but rather to show the
teacher how to usc it effectively and also to teach the student
to use it effectively. Research toward this objective is conspicuous
by its absence.

COMPUTER-BASED INSTRUCTION

Teaching which is performed «ud monitored by a computer.
usually referred to as computer-based instruction, is an offshoot
of programed instruction, In a typical design, the student com-

.
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municates with the computer by means of an clectric typewriter,
and the computer, in turn, communicates with the stucdent by
means of a cathode ray tube similar to the viewing screen of a
television set. The student tyvpes information or directions on the
electric typewriter. The computer is programed to process and
interpret-this-information or directions and respond by sentences,
words, or other symbhols which appear on the viewing screen
before the student.

Findings of Studies

As in the case of studies of programed texts. studies of com-

- puter-hased *eaching indicate that many students learn as well by

this mode of instruction as by conventional classroom instruction.
Morcover, the efficiency of instruction, that is, the amount of
learning in a given-period of time, seems to he about the same.
As might be expected, students enjoy the variation in style of
teaching that occasional use of computer-based instruction pro-
vides. But they tire of it if it is used exclusively and long for the
discussion that often characterizes group instruction.

How well students will improve in the higher mental processes,
¢.g., reasoning, valuing, and solving problems, as the result of
computer-based instruction is as open to question as in the case
of programed texts. But the theoretical possibilities for improv-
ing these mertal processes is great, and it should surprise few
people if hefore long we find that computers and programs are
developed which do this very thing.

"Of great value in computer-based instruction is the feedback
about student responses and progress which arc provided the
teacher. Of course, in conventional group instruction feedback is
also present, but it cannot he so comprehensive, systematic, and
casily recorded. Henee it is not of such value for adapting ihe
teaching to each student. Studies repeatedly make mention of
how this information is used to alter sequences of items, phras-
ing of itemns, response time. the number of errors on a particular
item, and the modification of remediation loops.

Finally, the expense of computer-based instruction is con-
tinually being reduced. More sophisticated computers are being
developed which will service more students studyving different
courses at different points in the course. These will reduce the
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cost per student hour. One prediction is that by 1975 the cost will
he 10 cents per student hour which will .lppro‘l(h the cost of con-
ventional group instruction. The future for computer-hased in-
struction is hoth promising and exciting,

THE CULTURALLY DISADVANTAGED

We now turn to a special group of learners to whom attention
increasingly is being paid. The terms eulturally disadcantaged
student and culturally deprived student are used to denote stu-
dents in cconomically and culturally imposerished areas of large

cities and certain geographical areas. There is more concern for

the educational welfare of the children in these areas than there
is knowledge about how to teach and control them. This is be-
cause until only recently, when the concern has manifested itself
in the availability of federal funds to support rescarch. there has
been little systematic rescarch done on teaching these children.

Gordon (8, pp. 421-22) peints out that “the literature is replete

with discussions of what a teacher should be and do. but very
few of the suggestions or conclusions arc supported by rescarch
evidence,” In _spite of this conclusion, with which anvone whio
reads the Jiterature will concur. the suggestions represent con-
jectures which a teacher can try.

As far as he subject matter of mathematics is concerned, cer-
tainly priority should be given to the mathematics the citizen
needs to know to count, estimate. measure, compare, and com-
pute—the arithmetic of the normal clementary grades. Whether
this is taught to 6- to 12-year-olds or to 13- to 18-yvcar-olds should
not be crucial when sueh knowledge is so important. The social
utility of the knowledge and skills probably will be given more
weight than its academic utility—uscfulness in portraying mathe-
matical structure. Certainly the principle of readiness must be
used. } .

The contest in which mathematics is tanght appears to he
particularly crucial for the culturally disadvantaged. since they
do not handle abstractions casily. Familiar and concrete situa-
tions. c.g.. buying in a storc, gambling, rucing pigeons, sports,
and music. have been used with some success. It is diffienlt to
place mathematics teaching in meaningful contests. Perh.lp.s
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getting the studeuts to tell what they do will reveal some con-
texts which a teacher can utilize,

Reportedly, role-playing has been used with suceess, e.g.. “Pre-
tend yon don't understand how to do the problem. What
questions would you ask?” It gets the students to talk rather than
listen to the teacher talk. Also, when a stadent is plaving a role,
he is somewhat freed from his normal insccurity and defensive-
ness and is more disposed to attempt problems and tasks which
fear of failure would lead him not to attempt.

CONCLUSION

In the final analysis. the justification ofxesearch is the extent to
which it enables practitioners—to make wise choices. The con-
clusions based on some of the rescarch in the teaching of mathe-
matics which have heen stated above may serve the classroom
teacher to this end. But the teacher should 1ot ignore the possi-
bility of informal rescarch he may do on his own-and in his own
situation. In fact, such rescarch may be of wore value to the
teacher just because it is restricted to the context in which he
operates and focuses on the very problems he faces. There cer-
tainly is a place for such research: it should he both encouraged
and fostered. 7
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